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ABSTRACT: The yield behavior of an amorphous glassy polymer has been studied with
true tensile stress–strain curves, obtained at various crosshead speeds by means of a
new experimental method. A constitutive equation from nonlinear viscoelasticity has
been used, with the further assumption that the material, during deformation, subse-
quently follows the following two distinct paths: a nonlinear viscoelastic, and a plastic
one. The maximum strain, where this distinction is manifested, has been treated as a
control parameter, while the strain rate was experimentally evaluated. The decompo-
sition of deformation has been made with a suitable kinematic formulation, proposed in
the literature. The theoretical results describe the experimental curves in detail. © 1999
John Wiley & Sons, Inc. J Appl Polym Sci 71: 2007–2015, 1999
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INTRODUCTION

Glassy polymers constitute a large class of engi-
neering materials so that it is interesting to quan-
tify the large inelastic deformation behavior of
these materials. Such behavior is known to ex-
hibit strain rate, temperature, and a pressure-
dependent yield, as well as true strain softening
and strain hardening after yield.

In the description of the deformation behavior
of solid polymers, a distinction is usually made
between the linear viscoelastic regime at low
strain, the nonlinear viscoelastic response at
moderate strain, and the yield behavior at high
strain values, as has been mentioned else-
where.1,2

The linear viscoelastic deformation is ade-
quately described using the linear response the-

ory, while the nonlinear regime is still a field of
research. On the other hand, the yield of poly-
meric materials is classically described by using
yield criteria, with the pressure- and rate-depen-
dent von Mises criterion being more successful.
Several attempts have been made to describe the
large deformation of glassy polymers, by Boyce et
al.,3 or by Wu and van der Giessen,4 that combine
the elastoviscoplastic response at small strains
and the strain hardening effect after yield.

Another approach assumes that yielding in
polymers is related to a molecular relaxation pro-
cess, occurring when the plastic flow rate is equal
to the applied strain rate. The use of a stress-
dependent relaxation time was initially intro-
duced by Tobolsky and Eyring.5 It was modified
later by Haward and Thackray,6 who proposed a
Langevin spring to account for the finite extensi-
bility of the entanglement network. However, the
use of a single relaxation time cannot account for
the viscoelastic response at small and moderate
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strains. Therefore, a spectrum of relaxation times
would be more appropriate. If it is further as-
sumed that the relaxation times depend on the
same way on the total stress, the principle of
time–stress superposition has been applied by
Bernstein and Shokooh,7 which is equivalent to
the time–temperature superposition.

In this work, a constitutive model is developed
that combines the initial viscoelastic deformation
behavior of polymeric glasses, at small and mod-
erate strains, with the post-yield plastic flow, ac-
companied by a strain softening and strain hard-
ening.

The following analysis is based on the idea that
there are two distinct paths, followed by the ma-
terial during the deformation procedure. In the
first stage, at small strains, the viscoelastic path
is dominant, and the corresponding constitutive
relations, according to the nonlinear viscoelastic
description by Matsuoka,8 are expressed as the
product of a strain-dependent term with a time-
dependent one. This behavior is extended up to a
critical value of deformation, which acts as a con-
trol parameter of the whole behavior of the mate-
rial. At this point, a localized domain breakage
takes place inside the structure of the material,
according to Matsuoka’s treatment, revealing a
totally new behavior this way. Hereafter, the
plastic path prevails.

For a suitable application of the above consti-
tutive equation, a kinematic description is neces-
sary to separate from the total deformation the
part, which will be used in the viscoelastic re-
sponse, and the other one, which follows the plas-
tic flow behavior. This kinematic formulation is
based on an earlier work developed by Rubin9 and
used by Spathis and Kontou.10 According to this
treatment, an evolution equation for the first type
of deformation has been defined, without specify-
ing a plastic deformation tensor explicitly.

Moreover, in the following treatment, the exact
knowledge of the rate of deformation, as well as
the characteristic strain value, at which the phe-
nomenon of the separation of the two paths is
disclosed, is very significant. The intrinsic plastic
behavior of ductile materials has been extensively
studied by G’Sell et al.11 They developed a novel
technique that analyzes the sample profile in real
time, while the effective strain is recorded from
the minimum specimen diameter. Moreover, with
an appropriate control system, the local effective
strain rate is maintained constant.

In our study, the strain rate and the final elas-
tic strain value, have been determined experi-

mentally, by a new device. This system allows a
noncontact measurement of longitudinal defor-
mation on the sample, while the load is recorded
simultaneously. For a constant crosshead speed
experiment, it was found that the local strain rate
appears to vary by one or two orders of magnitude
across the specimen gauge length. The time evo-
lution of local strain and local strain rate could be
recorded and introduced into the constitutive
model. Moreover, the tensile stress had to be cor-
rected for this strain variation with the further
assumption that the deformation procedure is iso-
choric. Then the true stress–strain curves have
been constructed for tensile experiments at four
different crosshead speeds tested. The theoretical
description of experimental results has then been
made successfully, while the parameters used are
grounded on a physical base.

MATERIALS AND EXPERIMENTAL

The material tested was polycarbonate, with the
commercial name Lexan, provided in plate form.
Dogbone tensile specimens have then been con-
structed with an average thickness of 2 mm, an
average width of 3.8 mm, and a gauge length of 30
mm. In order to eliminate any prehistory effects,
the samples were annealed at a temperature
above Tg for 1 h. The tensile experiments have
been carried out with an Instron 1121 tester
at room temperature. Four different crosshead
speeds have been used, namely, 0.1, 1, 5, and 10
mm/min. The longitudinal strain could be mea-
sured very accurately, with the laser extensom-
eter, which permits a noncontact measurement of
the longitudinal deformation distribution of sam-
ples. This experimental method is presented in
detail in Spathis and Kontou.10

For the elongation measurements, a high-con-
trast tape pattern code was applied to the gauge
length of the sample, namely, 15 white stripes on
dark background. The space between stripes was
1 mm.

During the tensile tests, the load was recorded
simultaneously with the percentage strain, and
the data acquisition has been made with a soft-
ware. The construction of engineering and true
stress–strain curves was then made, as will be
discussed below.

EXPERIMENTAL RESULTS

In this study, a noncontact method of deformation
measurement has been used. This technique per-
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mits the detailed description of the deformation
distribution along the gauge length, in every zone
separately. In the case of nonuniform deforma-
tion, where necking initiation and neck propaga-
tion takes place, the specific zone where these
effects are exhibited can be specified. The time
evolution of strain along the zone with maximum
deformation is presented in Figure 1 as curve (a),
as well as a representative plot for the corre-
sponding strain along the zones, that are de-
formed elastically, namely, curve (b). As is ob-
served, during the initial elastic response, all
zones have almost the same strain. When plastic
instability emerges, followed by necking initia-
tion, a large deviation of strain appears, as shown
in curve (a), compared to the rest of the regions
[curve (b)] Fig. 1, that are still deforming elasti-
cally. These zones appear to have a decremental
trend at the same time. This behavior takes place
in a very short time interval; hereafter, the slope
of strain increment in curve (a) decreases due to
the fact that neck propagates and extends
through the entire zone.

This picture may be clearly presented in terms
of strain rate versus time in Figure 2. In this
figure, curve of «̇r represents the strain rate vary-
ing with time for the zone with maximum defor-
mation, while curve, defined as «̇el, shows the
strain rate dependence of a representative zone
that deforms elastically. Here, the sudden in-
crease of strain rate «̇r is more obvious, extended
in a very short time, while this effect is less pro-
found for the other zone.

If the data of Figure 2 are plotted with respect
to stretch ratio, as shown in Figure 3, the exact

value of strain where plastic instability takes
place can be defined. From this picture, we ob-
serve that, initially, the strain rate is very slow
and almost equal to the imposed strain rate. Then
«̇r speeds up, reaching a high value, and remains
constant as long as neck propagation continues.
When necking exceeds the boundaries of this
zone, a decrement of strain rate appears, exhibit-
ing the initiation of strain hardening. At this
stage, the stretch ratio at which this effect takes
place can be accurately defined.

In Figure 4, strain rate versus strain for the
four different crosshead speeds examined is pre-
sented. In all cases, the data correspond to the
zone with maximum deformation. The shape of
this plot remains constant, while the values are

Figure 1 (a) Strain variation versus time for the zone
with maximum deformation and (b) a representative
zone that deforms elastically for the crosshead speed of
0.1 mm min.

Figure 2 Strain rate variation versus time with re-
spect to Figure 1. Curve «̇r corresponds to the data of
Figure 1(a), and «̇el corresponds to the data of Figure
1(b).

Figure 3 The experimental results of Figure 2 with
respect to the stretch ratio.
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scaled in respect to the crosshead speeds tested.
Moreover, an interesting remark can be made
regarding this plot. The onset of yielding, which is
accompanied by the rapid increase of strain rate,
is exhibited in a narrow region of strain, for all
crosshead speeds tested, and this value is approx-
imately equal to 0.04. This value represents the
maximum elastic strain, is material-dependent,
and for glassy polymers has a value close to 0.1,
as is also reported by Matsuoka.8

It is assumed here that all glassy polymers are
characterized by such a universal parameter that
controls the initiation of plastic behavior and is
slightly strain-rate-dependent, as compared to
the strong rate dependence of the yield stress. In
the following analysis, it will be considered that
this parameter controls the transition from elas-
tic to plastic behavior.

If we had the possibility to reduce the length of
the zone with neck initiation, to the dimension of
the localized region, where the onset of yielding
takes place, then the respective strain rate would
be equal to the plastic rate of deformation. In
order to approximate this value, a scaling proce-
dure has been followed. In Figure 5, plots of strain
rates of various reference lengths, starting from
the one with the neck initiation and moving
equivalently from both sides up to the total spec-
imen gauge length, are presented for a crosshead
speed equal to 0.1 mm/min.

As is observed from this figure, the correspond-
ing strain rate plots are scaled into similar forms,
taking even lower values. Assuming that the
same scaling form will be retained if we move to
smaller gauge lengths towards the microscopic
plastic zone, we can conclude that the rate of
plastic deformation Gp is

Gp 5 k~«̇r 2 «̇el! (1)

where k is an amplification factor, which will be
defined below, and «̇r and «̇el are the strain rate of
the zone with maximum deformation and of the
zone deforming elastically, respectively. These
two magnitudes are also plotted in Figure 2.

The load deformation data for all crosshead
speeds tested are presented in Figure 6, in terms
of engineering stress. However, due to the inho-
mogeneous deformation of the material, exhibited
initially by neck formation and followed by a sub-
sequent neck propagation along the specimen
gauge length, this conventional determination of
tensile data does not adequately describe the in-
trinsic behavior of the material. Therefore, the
experimental data have been replotted in terms of

Figure 4 Strain rate of zone with maximum elonga-
tion with respect to the stretch ratio for four different
crosshead speeds tested.

Figure 5 Strain rate versus time of regions, includ-
ing an increasing number of successive zones, starting
from the reference one.

Figure 6 Engineering tensile stress–strain plots of
polycarbonate at four different crosshead speeds.
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true stress–strain curves, in Figure 7, assuming
an isochoric deformation procedure. More specif-
ically, the true stress and true strain have been
defined in local terms, as follows:

s 5
P
A 5 S P

A0
D S l

l0
D

« 5 lim
l03 0

F lnS l
l0
DG (2)

where A and A0 are the current and initial areas
of cross section, respectively, and length l0 and l
are the initial and current length of a small slice
of the specimen located at the point where s and
« are defined. In our case, this small slice of the
sample is the zone of 1 mm, where the neck ini-
tiation occurs. The possible curvature that may
occur with neck formation is assumed to have
negligible contribution on the calculation of stress
because the radius of this curvature is very large
compared to the dimensions of the cross section.
Moreover, as neck propagates, the reference zone
where the deformation measurement, if focused,
remains prismatic. Therefore, if the same proce-
dure to that by G’Sell et al.11 is followed, where
the effective stress is scaled with the triaxiality
factor FT, introduced for the necking phenomena
by Bridgman,12 it may be extracted that this fac-
tor has a negligible effect, for the geometry of the
samples tested.

From both figures, the rate dependence of yield
stress is obvious while the yield strain or the final
elastic strain seems to be slightly strain-rate-sen-
sitive. Therefore, this value is assumed to be con-

stant and almost equal to 0.04, as mentioned
above.

The initial slope of the stress–strain plot up to
yield stress exhibits a varied curvature, which is
commonly abounded in viscoelastic materials,
when constant strain rate experiments are exe-
cuted. The rate dependence of the yield stress and
the shape of these plots up to yield initiation lead
to the conclusion that this behavior is not purely
elastic, exhibiting viscoelastic features, and is de-
scribed with the following analysis.

CONSTITUTIVE EQUATIONS FOR
UNIAXIAL STRESS

The first stage of deformation procedure will be
described through a viscoelastic path, which is
controlled by a spectrum of relaxation times, as in
the analogy, is proposed in Tervoort et al.1 The
maximum stress corresponds to the terminal
value that is obtained when the material region
with the highest relaxation time breaks down.8

This occurrence takes place at a certain strain,

«̇l 5 «# (3)

where «̇ is the imposed strain rate, and l is the
relaxation time. In our case, «# is equal to 0.04, as
discussed above.

Following as a possible mechanism, the vis-
coelastic path, the formulation of stress may be
given by the following expression, which is also
used in Matsuoka.8

s 5 E0«#F1 2 expF2
«

«#GG (4)

From the above treatment, it may be concluded
that the magnitude of «# is a crucial factor that
determines whether the viscoelastic or plastic
path is followed, as proposed in Matsuoka.8 After
the critical strain «# is reached and the terminal
stress is obtained, the material follows a plastic
path already existing in a latent condition up to
this stage; hereafter, it manifests, followed by a
subsequent breakage of material domains. At this
stage, a set of constitutive equations should be
necessary to describe the plastic flow. A suitable
kinematic formulation will be used for separating
the total deformation in the following two parts:
the plastic one that follows an associate flow rule,
and the remaining part that is related with

Figure 7 True tensile stress–strain plots of polycar-
bonate at four different crosshead speeds with respect
to the zone with maximum elongation.
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the viscoelastic constitutive equation, mentioned
above. This decomposition has been made follow-
ing previous works by Rubin.9

Although Rubin’s treatment has been intro-
duced for describing a general anisotropic re-
sponse of crystalline metals, his analysis can be
applied as a constitutive theory for the general
description of plastic behavior of materials.

According to his assumption, the elastic defor-
mation of each material point has been formu-
lated through a triad of vectors mi, that are re-
lated to dilatation, distortion, and orientation of a
mean atomic lattice in respect to some reference
state. To avoid the decomposition of the deforma-
tion gradient tensor into elastic and plastic parts,
because these tensors lack an explicit determina-
tion in the present configuration of the material
elements, Rubin specified an evolution equation
for the elastic deformation, including the relax-
ation effect of plastic deformation, without intro-
ducing a plastic deformation tensor explicitly. It
is assumed here that the triad of vectors mi is
defined to characterize the deformation state of a
material element, and they constitute a set of
orthonormal vectors, implying that the corre-
sponding metric tensor mij equal to mij 5 mi z mj
is given by

mij 5 dij (5)

In order to define the change of the volume
element we are referred to, the dilatation Jm
(which is unity in the reference state) is intro-
duced and given by

Jm 5 m1x~m2 z m3! 5 ~detmij!
1/2 (6)

Moreover, to define the distortional measures
of the elementary volume, Rubin has introduced
another set of orthonormal vectors m*i defined by
the following equations:

m*i 5 Jm
2 1/3mi with m9ij 5 m9i z m9j 5 Jm

2 2/3mij (7)

It is easily then extracted that

detm9ij 5 1 (8)

The microstructural variables mi are determined
by an evolution equation of the following form:

ṁi 5 Lmmi (9)

where the second-order tensor Lm corresponds to
the elastic velocity gradient and is assumed to be
separated additively into the form:

Lm 5 L 2 Lp (10)

where L and Lp are the velocity gradients of total
and plastic deformation, respectively.

Concerning uniaxial stress in the e1 direction
in respect to a fixed rectangular Cartesian base
vector ei parallel to mi, it can be shown that the
velocity gradient is specified by the following
form:

L 5 D 5
ȧ
a e1 ^ e1 1

ḃ
b e2

^ e2 1
ċ
c e3 ^ e3 (11)

where the symbol R denotes the tensor product
between two vectors, and a, b, and c represent
the stretches of material line elements in the co-
ordinate directions e1, e2 and e3, respectively,
with following initial conditions:

a~0! 5 b~0! 5 c~0! 5 1 (12)

The antisymmetric part W of the velocity gra-
dient and consequently Wp vanish in the case of
uniaxial stress, resulting in

Lp 5 Dp (13)

Then, the corresponding constituents of the dis-
tortional vector m*i may be represented by the
following forms.

m933 5 am
2 , m911 5 m922 5

1
am

m93 5 am e3,

m91 5
1

Îam
e1, m92 5

1

Îam
e2 (14)

where am is a function to be determined.
The deviatoric part D* of D may be defined by

the following equation:

D* 5 D 2
1
3 ~D z I!I (15)
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Combining equations (6), (7), (9), and (10) gives

J̇m

Jm
5 trLm 5 DzI

ṁ9ij 5 2~D 2 Dp!z~m9i ^ m9j! (16)

where the dot product A z B between two tensors
denotes the usual scalar product when A and B
are vectors, and it denotes the scalar tr(ABT)
when A and B are second-order tensors.

The associate flow rule, which defines the sym-
metric part of the plastic velocity gradient Dp,
has been written by Rubin as

Dp 5 GpD# p (17)

where the direction of D# p for a plastically isotro-
pic response is specified by the deviatoric portion
of the driving stress tensor, and Gp is a non-
negative function expressing the rate of plastic
deformation and needs to be specified.

For the case of uniaxial deformation, Rubin,
solving the above equations, extracted the follow-
ing expression for the time evolution of the
stretch ratio am, of the volume element, which is
subjected to the large imposed deformation.

ȧm

am
5 3 1 1

1 2 2v
2~1 1 v! Sam

3 2 1
am

D
1 1

1 2 2v
6~1 1 v! S5am

3 2 2
am

D4
3 F ȧ

a 2
Gp

18 Sam
3 2 1
am

3 D ~4 am
3 1 2!G (18)

with the initial condition am(0) 5 1, and v is the
Poisson ratio.

The functional form of Gp has been mentioned
in the previous section and expressed by eq. (1).
The amplification factor k of eq. (1) is considered
to be strain-rate-independent and state-of-defor-
mation-independent. Consequently, k can be
evaluated at the stage where yield initiates, and
the stretch ratio am is approximately equal to 1,
while ȧm is almost equal to zero. Then the second
term of the second part of eq. (18) is equal to zero.
Using the above approximations, we obtain

Gp >
ȧ
a

1
am 2 1 (19)

At the reference zone, ȧ is equal to «̇r, and the
coefficient k is equal to 1/a(am 2 1) or equal to
1/a«# , where «# is the terminal elastic strain of this
zone, and a > 1.0, as is shown in the experimen-
tal data of Figure 7. At the yield point, «# is con-
sidered to be constant equal to 0.04, and, conse-
quently, k is equal to 25.

The integration of eq. (18) determines the
value of stretch ratio ȧm at every state of elonga-
tion. By incorporating the corresponding magni-
tude of strain into the viscoelastic constitutive eq.
(4), the calculation of stress can be made.

The integration method has been made numer-
ically, using small time steps, with the software
Mathematica developed by Wolfram13 and a per-
sonal computer. Gradually decreasing the origi-
nal time step up to one-tenth, a high convergence
has been obtained.

In order to describe the material response at
various crosshead speeds, a scaling rule, widely
applied in the viscoplasticity by Matsuoka,8 has
been used. Following this rule, a stress–strain
curve at a strain rate «̇2 can be predicted from an
experimental curve obtained at a rate «̇1 by mul-
tiplying the stress in the experimental curve by
the scaling factor («̇2/«̇1),n where «̇2 represents
the imposed strain rate of 10 mm/min and «̇1
corresponds to the speed of 0.1 mm/min. Both
values of these strain rates are taken to be con-
stant, equal to the average value of the imposed
crosshead speed reduced to the total specimen
gauge length. Following this scaling law, the data
of the intermediate speeds can also be extracted.

The calculation of the exponent n can be made
in terms of the slope of the variation of the yield
stress plotted logarithmically with respect to
strain rate. Following Figure 8, where experimen-

Figure 8 Yield stress versus strain rate plotted log-
arithmically at four different strain rates examined.
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tal yield stress is presented versus strain rate,
exponent n has been found equal to 0.028.

As has been testified in the experimental re-
sults of the stress–strain curves, a strain harden-
ing takes place in a specific value of the stretch
ratio. This specific stretch ratio can also be de-
fined from the variation of strain rate versus
strain, where a great decrement of strain rate
magnitude is observed. At this point, the plastic
deformation has been spread throughout the ref-
erence zone; hereafter, every molecular align-
ment results to a strain hardening. To obtain the
complete calculation of the stress, including this
stage of deformation, a supplementary term for
stress should be taken into account due to the
entropic hardening.

The entropic hardening term can be repre-
sented as a stress based on the theory of rubber
elasticity of Kuhn and Grun.14 The modelling of
entropic resistance has also been reported by
Parks et al.15 Upon stretching, the chains begin to
orient in an affine manner, and this effect can be
described by the statistical mechanics network
models of rubber elasticity. In our case, the three-
chain model of James and Guth16 has been used.
In this way, the total stress may be expressed as

stotal 5 s for a # a*
stotal 5 s 1 sh for a $ a* (20)

where s is obtained by solving the system of equa-
tions (1), (4), (18), and (19), a* is the stretch ratio
of the onset of strain hardening, and sh is a stress
attributed to the strain hardening and is given by

sh 5 Gp

ÎN
3 FliL 2 1 S li

ÎND
2

1
3 O

j 5 1

3

ljL 2 1 S lj

ÎNDG (21)

where li are the stretch ratios in the three principal
directions, with l1 5 a and l2 5 l3 5 1/a ` .5. N
is the equivalent number of rigid links between
entanglements. As is mentioned by Boyce et al.,3
=N is equal to the terminal or locking stretch.
From the true stress–strain curves of Figure 7, it is
shown that locking occurs at a strain almost equal
to 0.5, resulting in a value for N approximately
equal to 3. Gp is the strain hardening modulus
taken to be equal to 18 MPa.

The theoretical results of stress versus strain
are plotted in respect to the experimental ones, in
Figure 9, at two different crosshead speeds,
namely, 0.1 and 10 mm/min.

CONCLUSIONS

In this work, the intrinsic tensile stress–strain
response of polycarbonate at various crosshead
speeds has been evaluated by means of a noncon-
tact method of deformation measurement, where
the detailed evaluation of strain and strain rate
in real time, at specific regions of specimen gauge
length can be made.

In this treatment, the yield and post-yield be-
havior of polycarbonate was assumed to follow the
following two distinct paths: an initial viscoelastic
path up to a specific deformation that can be
accurately defined by the available experimental
technique and acts as a control parameter, and a
subsequent plastic path that manifests after
yielding.

The evaluation of the strain rate in real time
plays a decisive role because it can be incorpo-
rated into the constitutive equation, leading to
the description of stress overshoot. In this way,
the strain softening, exhibited by the material
response, can be described without any further
internal parameters, as is made by various mod-
els existing in the literature. Hereafter, only the
two parameters N and Gp for the description of
strain hardening need to be specified. The ob-
served rate effect of yielding has been depicted
with a well-known scaling law.

Figure 9 True tensile stress–strain plots of polycar-
bonate at two crosshead speeds. Dashed lines represent
theoretical results; solid lines represent experimental
results.
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With this treatment, the exact shape of the
experimental stress–strain curve can be illus-
trated in detail, with only two parameters, as
mentioned above. The good approximation be-
tween theory and experiment arises from the fact
that instead of the typical equations of plasticity
widely used in other approaches, a different pro-
cedure has been followed here. The separation of
deformation into the part that corresponds to the
viscoelastic behavior, and that related to the plas-
tic flow, has been made in terms of an earlier
treatment, introduced by Rubin. In Rubin’s anal-
ysis, the inhomogeneous deformation is described
by the velocity gradient tensor L, while the elastic
Fe and plastic Fp parts of the deformation gradi-
ent tensor F need not be defined. The problem
that Fe and Fp refer to different configurational
states, and are not integrable in the displacement
field, is avoided.
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